FOR HYDROPHOBICITY PREDICTIONS
 Adithya Polasa, Seyed Hamid Tabari, Mahmoud Moradi

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA

Abstract

The interaction of peptides with membrane lipids is significant in
the biological processes. Short peptides are an excellent the biological processes. Short peptides are an excellent
alternative to the immune response antibodies, and they play a alternative to the immune response antibodies, and they play a
very crucial role in binding, insertion, and folding of membrane very crucial roie in binding, insertion, and folding of membrane
proteins. The characterization of solvent dependent proeins. The characterization of solvent dependent
conformational ensemble of the peptides is required for a molecular-level understanding of the thermodynamic
hydrophobicity hydrophobicity scale. To characterize the solvent-peptide
interactions, we have developed a computational procedure that interactions, we have developed a computational procedure that organic solvent conditions and determine their properties at a
thermodynamic level. This study evaluates the peptide thermodynamic level. This study evaluates the peptide
conformational dynamics at different temperatures using conformational dynamics at different temperatures using
molecular dynamics (MD) in the explicit solvent of water and octanol to estimate the transfer free energies accurately and to predict the partition coefficients. We have used a series of
equilibrium MD simulations, and alchemical free energy equilculations to measure the transfer free energies within various approximations. This study sheds light on the efficiency and
accuracy of several different computational strategies for the accuracy of several different
study of transfer free energies.

Methods

Initial atomic models of 6 different sequence (YLALW, YLKLW, Initial atomic models of 6 different sequence (YLALW, YLKLW
YLLLW, YSASW, YSKSW, and YSLSW) of penta-peptides were generated using VMD molefacture1. The system was solvated with TIP3P water and octanol, then energetically minimized and
equilibrated for 50 ns under constant pressure and temperature equilibrated for 50 ns under constant pressure and temperature
of 1 atm and 300 K respectively with timestep of 2 fs. Fo of 1 atm and 300 K respectively with timestep of 2 fs . For
simulations CHARMM 36 forcefield were used. For minimization and system production simulations were performed using NAMD 2.132. Following equilibration simulations of all peptides, we
constructed 1000 peptides models solvated in water and octano binary film placing peptide in both water and octanol layers and binary film placing peptide in both water and octano layers and
equilibrated the models for another 10 ns . Free energy calculations were done using In Silico Alchemy free energy
perturbation (FEP) method. All visulizations of portein system perturbation (FEP) method. All visualizations of protein system
and free energy calculations are done using VMD. We and free energy calculations are done using VMD. We
performed the solvation free energy calculation of peptide in performed the solvation free energy calculation of peptide in
water and octanol solution of 20 individual systems for each peptide. The average solvation free energy values were used for

Octanol

Water

No of Water Contacts in Octanol Fig A. Snapshot of MD equilibrium simulation with water (gray) and octanol (cyan). To understand the structural behavior of peptide we solvated in both water (blue) and octanol (red).
Fig B. Hydrophobicity is the significant contributor to peptide stability. Even minor modulation in the hydrophobicity scale could directly Affect the structural behavior of the peptide.
Fig C. The water interaction with peptide could be a critical variable to estimate the hydrophobicity of the peptides. The peptides with a lower hydrophobic scale have a higher no of water interaction in octanol.
Fig D. Our Logp calculations shows that peptides with higher hydrophobicity scale have higher Logp value in octanol.

CONCLUSION

We have demonstrated that the exact connection between the octanol-water partition coefficient of a peptide and its structure can be effortlessly estimated by properties of the peptide, for example, on our observations the peptide's conformational dynamics are dependent on the hydrophobic nature of the peptide. Peptides with a similar range of hydrophobicity have relatively similar behavior in
the respective solvent for example, simulations of the respective solvent for example, simulations of YLALW and
YLLLW (with 80% hydrophobicity) have a significantly similar YaLLU (with 80% hydrophobicity) have a sognificantly similar
radius of gyration (Rg) in octanol and water solvents. Even minor modulation in the hydrophobicity scale could directly affect the structural behavior of the peptide, YLKLW peptide which is 60%
hydrophobic has a very distinct behavior compared to the others hydrophobic has a very distinct behavior compared to the others
(YLALW \& YLLLW). The water interactions in octanol/water solvent with peptide could be a significant variable to estimate the hydrophobicity of the peptides. As expected, the peptides with a
lower hydrophobic scale have a higher no of interactions with lower hydrophobic scale have a higher no of interactions with
water in octanol solvent. The parameters obtained in our analysis water in octanol solvent. The parameters obtained in our analysis
could be used as a hydrophobicity scale for peptides. Finally, the calculated LogP of peptides using solvation free energy perturbation (FEP) of the peptide in water and octanol clearly support our predictions from our equilibrium simulation
parameters. In this study, we have demonstrated that partition coefficients of peptides can be predicted reliably by using either by equilibrium simulations model or FEP model

Reference

1. Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J. Molec. Graphics, 1996, vol. 14, pp. 33
2. James C. Phillips, David J. Hardy, Julio D. C. Maia, John E. Fiorin, Jao V. Ribeiro, Rafael C. Bernarad, Ronak Buch, Giacom Fiorin, Jerome Henin, Wei Jiang, Ryan McGreevy, Marcelo C,
Melo, Brian K. Radak, Robert D. Skeel, Abhishek Singharoy, Y Wang, Benoit Roux, Alleksei Aksimentiev, Zaida Luthey-Schulten, Laxmikant V. Kale, Klaus Schulten, Christophe Chipot, and Emad Tajkhorshid. Scalable molecular dynamics on CPU and GP architectures with NAMD. Journal of Chemic
153:044130, 2020. doi:10.1063/5.0014475.

Acknowledgement

This research is supported by the National Science Foundation under CHE 1945465. This re
Arkansas Biosciences Institute.

Contact

Email - apolasa@uark.edu,

P.I Email - moradi@uark.edu,
Website - https://bslgroup.hosted.uark.edu

